
13 570684 Ch09.qxd 3/31/04 2:51 PM Page 114

114 Part II: Run and Scream from Variables and Math

The range for floating-point numbers is quite large. With most C compilers,
you can store any number in the range ±3.4 × 10–38 to ±3.4 × 1038. In English,
that’s a value between negative 340 undecillion and positive 340 undecillion.
An undecillion is a 1 with 36 zeroes after it. That’s a true, Mr. Spock-size
value, though most numbers you use as floats are far less.

� Rules for naming variables are in Chapter 8.

� Noninteger values are stored in float variables.

� Even though 123 is an integer value, you can still store it in a float vari
able. However. . . .

� float variables should be used only when you need them. They require
more internal storage and more PC processing time and power than inte
gers do. If you can get by with an integer, use that type of variable instead.

“Hey, Carl, let’s write a floating-point
number program!”
Suppose that you and I are these huge, bulbous-headed creatures, all slimy and
green and from the planet Redmond. We fly our UFO all over the galaxy, drink
blue beer, and program in C on our computers. I’m Dan. Your name is Carl.

One day, while assaulting cows in Indiana, we get into this debate:

Dan: A light-year is 5,878,000,000,000 miles long! That’s 5 trillion, 878 bil
lion, plus change! I’m not walking that!

Carl: Nay, but it’s only a scant 483,400,000 miles from the sun to Jupiter.
That is but a fraction of a light-year.

Dan: How much of a fraction?

Carl: Well, why don’t you type the following C program and have your
computer calculate the distance for you?

Dan: Wait. I’m the author of this book. You type the program, JUPITER.C,
and you figure it out. Sheesh.

#include <stdio.h>

int main()
{

float lightyear=5.878E12;
float jupiter=483400000;
float distance;

